Institution

University of South Florida

Vehicle Properties		
Total Length (in)	138	
Diameter (in)	6	
Gross Lift Off Weight (lb)	56.3	
Airframe Material(s)	Fiberglass	
Fin Material and Thickness (in)	Carbon Fiber, 1/8	
Coupler Length(s)/Shoulder Length(s) (in)	6 (Coupler), 5 (Shoulder)	

Motor Properties		
Motor Brand/Designation	Cesaroni L2200	
Max/Average Thrust (lb)	697.3 / 505.1	
Total Impulse (lbf-s)	1147.4	
Mass Before/After Burn (lb)	10.54 / 4.993	
Liftoff Thrust (lb)	562	
Motor Retention Method	75mm Aero Pack Flanged Retainer	

Stability Analysi	S
Center of Pressure (in. from nose)	99.94
Center of Gravity (in. from nose)	85.234
Static Stability Margin (on pad)	2.41
Static Stability Margin (at rail exit)	2.49
Thrust-to-Weight Ratio	9.98
Rail Size/Type and Length (in)	Туре 1515, 144
Rail Exit Velocity (ft/s)	77.8

Ascent Analysis	
Maximum Velocity (ft/s)	587
Maximum Mach Number	0.526
Maximum Acceleration (ft/s^2)	378
Target Apogee (ft)	5000
Predicted Apogee (From Sim.) (ft)	4606

Recovery System Properties - Overall	
Total Descent Time (s)	83
Total Drift in 20 mph winds (ft)	2132

Recovery System Properties - Energetics		
Ejection System Energetics (ex. Black Powder)		Black Powder
Energetics Mass - Drogue	Primary	2
Chute (grams)	Backup	2
Energetics Mass - Main Chute	Primary	3.5
(grams)	Backup	3.5
Energetics Mass - Other	Primary	2
(grams) - If Applicable	Backup	2

Milestone

CDR

Recovery System Properties - Recovery Electronics		
Primary Altimeter Ma	ke/Model	MissileWorks RRC3
Secondary Altimeter Ma	ake/Model	MissileWorks RRC3
Other Altimeters (if ap	plicable)	(2) RRC3, (1) RRC2+
Rocket Locator (Make	e/Model)	MissileWorks RTx
Additional Locators (if applicable)		MissileWorks RTx
Transmitting Frequencies and payload)	•	See pages 3 & 4.
Describe Redundancy Plan (batteries, switches, etc.)	All altimeters will have fully redundant backup systems, with completely isolated batteries, switches, wiring, electronic matches, and deployment charges.	
Pad Stay Time (Launch Configuration)	Up to 180 minutes, using 3.5V, 750 mAh LiPos and Energizer Industrial 9V.	

Recovery System Properties - Drogue Parachute				
Mar	nufacturer/Mo	odel	SkyAngle	
Size o	r Diameter (ir	n or ft)	20"	
Main Altime	eter Deploym	ent Setting	Apogee	
Backup Altin	neter Deployr	ment Setting	Apogee + 1.0s	
Velocity	at Deployme	ent (ft/s)	0	
Terminal Velocity (ft/s)		136		
Recovery Harness Material, Size, and Type (examples - 1/2 in. tubular Nylon or 1 in. flat Kevlar strap)		1/2" Tubular Kevlar		
Recovery Harness Length (ft)		25		
		/4" SS Quick l s, 3/16" FRP b	∟inks, 5/16" SS ulkheads	
Kinetic	Section 1	Section 2	Section 3	Section 4
Energy of Each Section (Ft-lbs)	304.2			

Recovery System Properties - Main Parachute				
Mar	nufacturer/Mo	odel	Fruity Chute	s Iris Standard
Size o	r Diameter (ir	n or ft)	96" (Upper), 84" (Lower)	
Main Altimet	er Deploymeı	nt Setting (ft)	700 (Upper), 700 (Lower)	
Backup Altime	eter Deploym	ent Setting (ft	700 (Upper), 700 (Lower)	
Velocity	at Deployme	nt (ft/s)	136 (Upper & Lower)	
Terminal Velocity (ft/s)		13.25 (U), 14.84 (L)		
Recovery Harness Material, Size, and Type (examples - 1/2 in. tubular Nylon or 1 in. flat Kevlar strap)		1/2" Tubular Kevlar		
Recovery Harness Length (ft)		33.5		
		/4" SS Quick L 5, 3/16" FRP b	inks, 5/16" SS ulkheads	
Kinetic	Section 1	Section 2	Section 3	Section 4
Energy of Each Section (Ft-lbs)	52.52	40.45		

Ince	.:	41 a.m.	
Inst	.itu	tion	

University of South Florida

Milestone

CDR

	Payload
	Overview
Payload 1 (official payload)	Our new payload design is a two-wheeled, horizontonally-orientated rover. The rover will contain an Arduino, batteries, soil recovery module, and all guidance sensors. The projected diameter is 5.67"; the internal diameter of the rocket body. The rover will be seat-ed inside a reserved section alongside the leveling system that will prevent deployment issues. The rover will be deployed via a whiched deployment system and complete the mission objective after an initiating signal has been received.
	Overview
Payload 2 (non- scored payload)	The secondary payload has been removed from the launch vehicle for this year's competition.

	Test Plans, Status, and Results
Ejection Charge Tests	Subscale ejection tests completed, yielding: 1.5g for drogue, 2g for lower section main, 3g for upper section main. Full-scale ejection tests completed on Feberuary 26, 2019 and March 2, 2019, yielding noted values above.
Sub-scale Test Flights	Initial subscale launch succesfully completed on November 17, 2018, full analysis available in CDR Report.
Vehicle Demon- stration Flights	Full scale initial test launches completed on February 26 and March 2, however in both instances the main parachute deployed early (at apogee) causing extreme drift. All other systems functioned perfectly.
Payload Demon-stration Flights	All vehicle demonstration flights contained active payload.

Institution

University of South Florida

Milestone

CDR

Transmitter #1							
Location of transmitter:	Upper Section Avionics Bay						
Purpose of transmitter:	Real-time flight data and GPS location.						
Brand	Digi	RF Output Power (mW)	250				
Model	XBee-PRO 900HP	902-928					
Handshake or frequency hopping? (explain)	Frequency Hopping Spread Spectrum (FHSS) w/ software selectable channels						
Distance to closest e-match or altimeter (in)	2.2 (from antenna to RRC3)						
Description of shielding plan:	Significant spacing and 1/8" FRP barriers between transmitter and altimeters / e-matches, and thick nylon tubes around nearby threaded rods.						

Transmitter #2							
Location of transmitter:	Lower Section Avionics Bay						
Purpose of transmitter:	Real-time flight data and GPS location.						
Brand	Digi	RF Output Power (mW)	250				
Model	XBee-PRO 900HP	Specific Frequency used by team (MHz)	902-928				
Handshake or frequency hopping? (explain)	Frequency Hopping Spread Spectrum (FHSS) w/ software selectable channels						
Distance to closest e-match or altimeter (in)	2.2 (from antenna to RRC3)						
Description of shielding plan:	parriers between transmitter and altimeters / o tubes around nearby threaded rods.	e-matches, and thick nylon					

Transmitter #3							
Location of transmitter:	Payload						
Purpose of transmitter:	To communicate with the payload, sending activation trigger remotely as instructed						
Brand	Digi	RF Output Power (mW)	250				
Model	XBee-Pro 900HP	902-928					
Handshake or frequency hopping? (explain)	Frequency Hopping Spread Spectrum (FHSS) w/ software selectable channels						
Distance to closest e-match or altimeter (in)	12						
Description of shielding plan:	Walls of the payload will be lined with carbon fiber to prevent interference						

Transmitter #4						
Location of transmitter:						
Purpose of transmitter:						
Brand	RF Output Power (mW)					
Model	Specific Frequency used by team (MHz)					
Handshake or frequency hopping? (explain)						
Distance to closest e-match or altimeter (in)						
Description of shielding plan:						

Institution

University of South Florida

Milestone

CDR

Transmitter #5						
Location of transmitter:						
Purpose of transmitter:						
Brand	RF Output Power (mW)					
Model	Specific Frequency used by team (MHz)					
Handshake or frequency hopping? (explain)						
Distance to closest e-match or altimeter (in)						
Description of shielding plan:						

Transmitter #6					
Location of transmitter:					
Purpose of transmitter:					
Brand	RF Output Power (mW)				
Model	Specific Frequency used by team (MHz)				
Handshake or frequency hopping? (explain)					
Distance to closest e-match or altimeter (in)					
Description of shielding plan:					

Additional Comments

_	-		_		-	-	_		_	_	_
	-	-	-	-	-	-	-	-	-	-	