Institution University of South Florida

Vehicle Properties		
Total Length (in)	141	
Diameter (in)	6	
Gross Lift Off Weight (lb)	53.9	
Airframe Material(s)	Fiberglass	
Fin Material and Thickness (in)	Carbon Fiber, 1/8	
Coupler Length(s)/Shoulder Length(s) (in)	6 (Typ.), 5 (Nose Cone)	

Motor Properties		
Motor Brand/Designation	Cesaroni L2375	
Max/Average Thrust (lb)	629, 551	
Total Impulse (lbf-s)	1093	
Mass Before/After Burn (lb)	9.17, 4.05	
Liftoff Thrust (lb)	551	
Motor Retention Method	75mm Aero Pack Flanged Retainer	

Stability Analysis		
Center of Pressure (in. from nose)	102	
Center of Gravity (in. from nose)	87.6	
Static Stability Margin (on pad)	2.40	
Static Stability Margin (at rail exit)	2.48	
Thrust-to-Weight Ratio	10.22	
Rail Size/Type and Length (in)	Type 1515, 144	
Rail Exit Velocity (ft/s)	76.7	

Ascent Analysis	
Maximum Velocity (ft/s)	608
Maximum Mach Number	0.54
Maximum Acceleration (ft/s^2)	328
Target Apogee (ft)	5000
Predicted Apogee (From Sim.) (ft)	5025

Recovery System Properties - Overall		
Total Descent Time (s)	84.1	
Total Drift in 20 mph winds (ft)	2466.65	

Recovery System Properties - Energetics			
Ejection System Energetics (ex. Black Powder)		Black Powder	
Energetics Mass - Drogue	Primary	TBD (with ejection tests)	
Chute (grams)	Backup	TBD (with ejection tests)	
Energetics Mass - Main Chute	Primary	TBD (with ejection tests)	
(grams)	Backup	TBD (with ejection tests)	
Energetics Mass - Other	Primary	TBD (with ejection tests)	
(grams) - If Applicable	Backup	TBD (with ejection tests)	

Recovery System P	roperties -	Recovery Electronics	
Primary Altimeter Mak	e/Model	MissileWorks RRC3	
Secondary Altimeter Ma	ake/Model	MissileWorks RRC3	
Other Altimeters (if ap	plicable)	(2) RRC3, (1) RRC2+	
Rocket Locator (Make	/Model)	MissileWorks RTx	
Additional Locators (if a	pplicable)	MissileWorks RTx	
Transmitting Frequencies and payload)	See pages 3 & 4.		
Describe Redundancy Plan (batteries, switches, etc.)	All altimeters will have fully redundant backup systems, with completely isolated batteries, switches, wiring, electronic matches, and deployment charges.		
Pad Stay Time (Launch Configuration)	Up to 180 minutes, using 3.5V, 750 mAh LiPo batteries.		

Recovery System Properties - Drogue Parachute				
Mai	nufacturer/Mo	odel	Sky	Angle
Size o	r Diameter (ir	n or ft)	20"	
Main Altim	eter Deploym	ent Setting	Apogee	
Backup Altir	neter Deployr	ment Setting	Apoge	ee + 1.0s
Velocity	at Deployme	ent (ft/s)		0
Terminal Velocity (ft/s)		136		
Type (examples - 1/2 in. tubular Nylon		1/2" Tubular Kevlar		
Recovery Harness Length (ft)		25		
Harness/Airframe SS Sv Interfaces			4" SS Quick Li , 3/16" FRP bu	nks, 5/16" SS U- lkheads
Kinetic Energy	Section 1	Section 2	Section 3	Section 4
of Each Section (Ft-lbs)	6754.66			

Recovery System Properties - Main Parachute				
Mar	Manufacturer/Model		Fruity Chute	es Iris Standard
Size o	r Diameter (ir	n or ft)	96" (Upper), 84" (Lower)	
Main Altimet	er Deployme	nt Setting (ft)	750 (Upper	r), 725 (Lower)
Backup Altime	eter Deploym	ent Setting (ft)	735 (Upper), 710 (Lower)	
Velocity	at Deployme	ent (ft/s)	136 (Upp	er & Lower)
Terminal Velocity (ft/s)		13.25 (U	J), 14.84 (L)	
Type (examples - 1/2 in. tubular Nylon		1/2" Tubular Kevlar		
Recovery Harness Length (ft)		33.5		
·		'4" SS Quick Li , 3/16" FRP bu	nks, 5/16" SS U- lkheads	
Kinetic Energy	Kinetic Energy Section 1		Section 3	Section 4
of Each Section (Ft-lbs)	65.56	73.52		

Institution	Offiversity of South Florida	Milestone	CDR
	Payload		
	0	verview	
Payload 1 (official payload)	Our new payload design is a two-wheeled, horizontonally-or recovery module, and all guidance sensors. The projected rover will be seat-ed inside a reserved section alongside the be deployed via a whiched deployment system and complete	diameter is 5.67"; the internal dia eveling system that will prevent o	meter of the rocket body. The leployment issues. The rover will
	0	verview	
	The secondary payload installed in the launch vehicle will be	e a dynamic apogee adjustment si	ubsystem. This system is a form

of airbrakes and will be used to slow the rocket during ascent in order to accurately reach the desired target altitude. The

airbrakes system will dynamically modify the coefficient of drag during flight, extending or retracting dynamic fins as necessary using a stepper motor.

Payload 2 (non-

scored payload)

	Test Plans, Status, and Results		
Ejection Charge Tests	Subscale ejection tests completed, yielding: 1.5g for drogue, 2g for lower section main, 3g for upper section main. Full-scale ejection tests scheduled for initial test launch on February 16, 2019.		
Sub-scale Test Flights	Initial subscale launch succesfully completed on November 17, 2018, full analysis available in CDR Report. Two more subscale test flights scheduled for January 19, 2019.		
Vehicle Demon- stration Flights	Full scale initial test launch scheduled for February 16, 2019.		
Payload Demon- stration Flights	Full scale demonstration flight with active payload scheduled for March 16, 2019.		

Institution	University of South Florida	Milestone	CDR

Transmitter #1				
Location of transmitter:	Upper Section Avionics Bay			
Purpose of transmitter:	Real-time flight data and GPS location.			
Brand	Digi	RF Output Power (mW)	250	
Model	XBee-PRO 900HP	Specific Frequency used by team (MHz)	902-928	
Handshake or frequency hopping? (explain)	Frequency Hopping Spread Spectrum (FHSS) w/ software selectable channels			
Distance to closest e-match or altimeter (in)	2.2 (from antenna to RRC3)			
Description of shielding plan:	Significant spacing and 1/8" FRP barriers between transmitter and altimeters / e-matches, and thick nylon tubes around nearby threaded rods.			

Transmitter #2				
Location of transmitter:	Lower Section Avionics Bay			
Purpose of transmitter:	Real-time flight data and GPS location.			
Brand	Digi	RF Output Power (mW)	250	
Model	XBee-PRO 900HP	Specific Frequency used by team (MHz)	902-928	
Handshake or frequency hopping? (explain)	Frequency Hopping Spread Spectrum (FHSS) w/ software selectable channels			
Distance to closest e-match or altimeter (in)	2.2 (from antenna to RRC3)			
Description of shielding plan:	Significant spacing and 1/8" FRP barriers between transmitter and altimeters / e-matches, and thick nylon tubes around nearby threaded rods.			

Transmitter #3				
Location of transmitter:	Payload			
Purpose of transmitter:	To communicate with the payload, sending activation trigger remotely as instructed			
Brand	Digi	RF Output Power (mW)	250	
Model	XBee-Pro 900HP	Specific Frequency used by team (MHz)	902-928	
Handshake or frequency hopping? (explain)	Frequency Hopping Spread Spectrum (FHSS) w/ software selectable channels			
Distance to closest e-match or altimeter (in)	12			
Description of shielding plan:	Walls of the payload will be lined with carbon fiber to prevent interference			

Transmitter #4			
Location of transmitter:			
Purpose of transmitter:			
Brand	RF Output Power (mW)		
Model	Specific Frequency used by team (MHz)		
Handshake or frequency hopping? (explain)	·		
Distance to closest e-match or altimeter (in)			
Description of shielding plan:			

			60.0
Institution University of S	outh Florida	Milestone	CDR
Landing of the project them	Transmitter #5		
Location of transmitter:			
Purpose of transmitter: Brand		DE Outrout Davies (m)A)	
Model	Cr	RF Output Power (mW)	
	51	pecific Frequency used by team (MHz)	
Handshake or frequency hopping? (explain) Distance to closest e-match or altimeter (in)			
Description of shielding plan:			
Description of shielding plan.			
	Transmitter #6		
Location of transmitter:	Transmitteer #0		
Purpose of transmitter:			
Brand	Ī	RF Output Power (mW)	
Model	Sr	pecific Frequency used by team (MHz)	
Handshake or frequency hopping? (explain)			
Distance to closest e-match or altimeter (in)			
Description of shielding plan:			
· · · · · · · · · · · · · · · · · · ·			
	Additional Comment	5	