Institution

University of South Florida

Vehicle Properties		
Total Length (in)	134	
Diameter (in)	6	
Gross Lift Off Weight (lb)	46.2	
Airframe Material(s)	Carbon Fiber/Fiberglass	
Fin Material and Thickness (in)	Carbon Fiber, 1/8	
Coupler Length(s)/Shoulder Length(s) (in)	6	

Motor Properties		
Motor Brand/Designation	Cesaroni L1410	
Max/Average Thrust (lb)	375.3/316.8	
Total Impulse (lbf-s)	1085.45	
Mass Before/After Burn (lb)	11.3 / 5.3	
Liftoff Thrust (lb)	1500	
Motor Retention Method	75mm Aerotech Retaining Ring	

Stability Analysis			
Center of Pressure (in. from nose)	96.7		
Center of Gravity (in. from nose)	82		
Static Stability Margin (on pad)	2.45		
Static Stability Margin (at rail exit)	2.45		
Thrust-to-Weight Ratio	8.13		
Rail Size/Type and Length (in)	Туре 1515, 144		
Rail Exit Velocity (ft/s)	58.2		

Ascent Analysis		
Maximum Velocity (ft/s)	594	
Maximum Mach Number	0.528	
Maximum Acceleration (ft/s^2)	252	
Target Apogee (ft)	5000	
Predicted Apogee (From Sim.) (ft)	5144	

Recovery System Properties - Overall		
Total Descent Time (s)	76.47	
Total Drift in 20 mph winds (ft)	2422.66	

Recovery System Properties - Energetics		
Ejection System Energetics (ex. Black Powder)		Black Powder
Energetics Mass - Drogue Chute (grams)	Primary	TBD (with testing)
	Backup	TBD (with testing)
Energetics Mass - Main Chute (grams)	Primary	TBD (with testing)
	Backup	TBD (with testing)
Energetics Mass - Other	Primary	TBD (with testing)
(grams) - If Applicable	Backup	TBD (with testing)

Milestone

PDR

Recovery System Pr	operties -	Recovery Electronics
Primary Altimeter Mak	ke/Model	Missle Works RCC2+
Secondary Altimeter Ma	ake/Model	Missle Works RCC3
Other Altimeters (if ap	plicable)	
Rocket Locator (Make	/Model)	Audible Beacon (TBD)
Additional Locators (if applicable)		
Transmitting Frequencies and payload)	(all - vehicle	***Required by CDR*** (Complete on pages 3 and 4)
Describe Redundancy Plan (batteries, switches, etc.)	All altimeters will have fully redundant backup systems, with completely isolated batteries, switches, wiring, electronic matches, and deployment charges.	
Pad Stay Time (Launch Configuration)	120+ minutes	

Recovery System Properties - Drogue Parachute				
Manufacturer/Model		Sky	Angle	
Size o	r Diameter (ir	n or ft)	20"	
Main Altime	eter Deploym	ent Setting	Apoge	e + 1.5s
Backup Altin	neter Deployr	ment Setting	Apogee + 1.5s	
Velocity	at Deployme	nt (ft/s)	50	
Terminal Velocity (ft/s)		132		
Recovery Harness Material, Size, and Type (examples - 1/2 in. tubular Nylon or 1 in. flat Keylar stran)		1/2" Tubular Kevlar		
Recovery Harness Length (ft)		25		
Harness/Airframe 3/16" Quick Interfaces to carbo		Links and D-E on fiber 1/4" b	Bolts attached oulkheads.	
Kinetic	Section 1	Section 2	Section 3	Section 4
Energy of Each Section (Ft-lbs)	10800			

Recovery System Properties - Main Parachute				
Mar	nufacturer/Mo	odel	SkyAngle	e Cert 3-XL
Size o	r Diameter (ir	n or ft)	89	sq ft
Main Altimet	er Deploymeı	nt Setting (ft)	6	50
Backup Altime	eter Deploym	ent Setting (ft	6	50
Velocity	at Deployme	nt (ft/s)	1	32
Terminal Velocity (ft/s)		10.5		
Recovery Harness Material, Size, and Type (examples - 1/2 in. tubular Nylon or 1 in. flat Keylar stran)		1/2" tubular kevlar		
Recovery Harness Length (ft) 33.		3.5		
Harness/Airframe 3/16" Quick Interfaces to carbo		Links and D-E on fiber 1/4" b	Bolts attached oulkheads.	
Kinetic	Section 1	Section 2	Section 3	Section 4
Energy of Each Section (Ft-lbs)	62.08	37.93		

Institution	
Institution	

University of South Florida

Milestone

PDR

	Payload
	Overview
Payload 1 (official payload)	The Phoenix rover concept was inspired by a reversed snowmobile, with drive wheels pulling along the rest of the body. The rover will containing an Arduino, batteries, soil recovery module, and all guidance sensors. The projected diameter is 5.67"; the internal diameter of the rocket body. The rover will be seat-ed inside a reserved section alongside the leveling system that will prevent deployment issues. The rover will roll out of the vehicle and complete the mission objective after an initiating signal has been received.
	Overview
Payload 2 (non- scored payload)	

	Test Plans, Status, and Results
Ejection Charge Tests	Planned, not yet completed. Will be performed the day before launches.
Sub-scale Test Flights	First launch scheduled for November 17, 2018 and second launch for January 19, 2019.
Vehicle Demon- stration Flights	Full scale initial test launch scheduled for February 16, 2019.
Payload Demon-stration Flights	Full scale demonstration flight with active payload scheduled for March 16, 2019.

Inctit	ution
III SUIL	

University of South Florida

Milestone

PDR

Transmitter #1						
Location of transmitter:						
Purpose of transmitter:						
Brand	RF Output Power (mW)					
Model	Specific Frequency used by team (MHz)					
Handshake or frequency hopping? (explain)						
Distance to closest e-match or altimeter (in)						
Description of shielding plan:						

Transmitter #2						
Location of transmitter:						
Purpose of transmitter:						
Brand	RF Output Power (mW)					
Model	Specific Frequency used by team (MHz)					
Handshake or frequency hopping? (explain)						
Distance to closest e-match or altimeter (in)						
Description of shielding plan:						

Transmitter #3						
Location of transmitter:						
Purpose of transmitter:						
Brand	RF Output Power (mW)					
Model	Specific Frequency used by team (MHz)					
Handshake or frequency hopping? (explain)						
Distance to closest e-match or altimeter (in)						
Description of shielding plan:						

Transmitter #4						
Location of transmitter:						
Purpose of transmitter:						
Brand	RF Output Power (mW)					
Model	Specific Frequency used by team (MHz)					
Handshake or frequency hopping? (explain)						
Distance to closest e-match or altimeter (in)						
Description of shielding plan:						

Institution

University of South Florida

Milestone

PDR

Transmitter #5						
Location of transmitter:						
Purpose of transmitter:						
Brand	RF Output Power (mW)					
Model	Specific Frequency used by team (MHz)					
Handshake or frequency hopping? (explain)						
Distance to closest e-match or altimeter (in)						
Description of shielding plan:						

Transmitter #6						
Location of transmitter:						
Purpose of transmitter:						
Brand	RF Output Power (mW)					
Model	Specific Frequency used by team (MHz)					
Handshake or frequency hopping? (explain)						
Distance to closest e-match or altimeter (in)						
Description of shielding plan:						

Additional Comments

1	•	•	•	•	•	•	•	•	•	•	