FLIGHT READINESS REVIEW

University of South Florida Society of Aeronautics and Rocketry 2017 - 2018

AGENDA

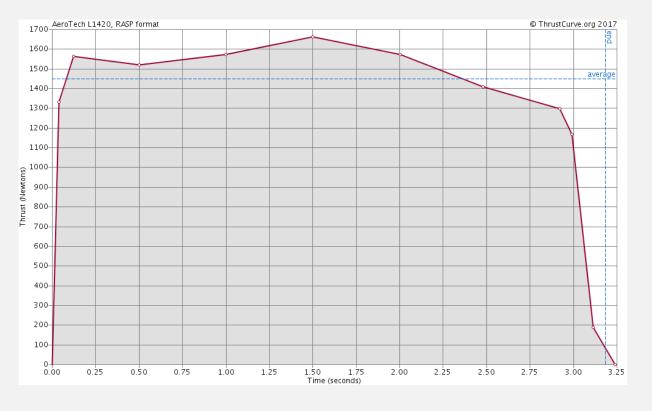
1. Launch Vehicle

- 2. Recovery
- 3. Mission Performance Predictions
- 4. Launch Vehicle Testing
- 5. Payload
- 6. Safety
- 7. Educational Outreach

LAUNCH VEHICLE DIMENSIONS

Diameter	5.148 in
Length	111 in
Projected Unloaded Weight	34.4 lbs
Projected Minimum Ballasted Weight	46.4
Projected Fully Ballasted Weight	48.8 lbs
Ballasted Weight	Up to 4.44

KEY DESIGN FEATURES OF LAUNCH VEHICLE



- Aerotech L1420 75mm Motor
- Four Sections
 - Nosecone
 - Rover Compartment
 - Main Altimeter Bay
 - Booster Section
- Recovery
 - One parachute for rover compartment and nosecone
 - One parachute and one drogue for Main Altimeter and Booster Section
- Adjustable Ballast System
 - Removable Ballast for Nosecone shoulder to manipulate flight path and apogee to launch day conditions
- Payload
 - Deployable Rover

LAUNCH MOTOR

Aerotech L1420		
Average Thrust	1420 N	
Maximum thrust	1814 N	
Total Impulse	4603 Ns	
Burn Time	3.2 s	
Case Info	CTI Pro75-4G	

ROCKET FLIGHT STABILITY

 Due to adjustable ballast system the stability has been calculated at maximum ballast and minimum ballast

Configuration with Aerotech L1420			
Ballast 4.25 lbs 2 lbs			
Center of Pressure	88.308 in	88.308	
Center of Gravity	68.34 in	70.072	
Static Stability Margin	3.88 cal	3.54 cal	

ROCKET FLIGHT STABILITY 4.25 lbs Ballast 2 lbs Ballast

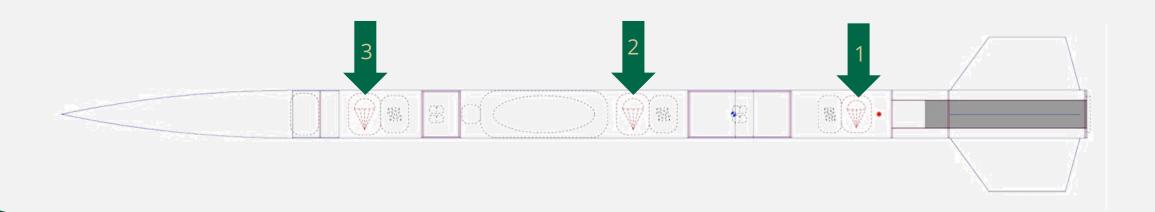
FLIGHT CHARACTERISTICS

Ballast	4.25
Projected Apogee	5303
Thrust-to-Weight Ratio	7.07:1
Max Velocity	602.89
Max Acceleration	224.28
Exit Rail Velocity	57.7
Exit Rail Stability	3.95

MASS STATEMENT & MASS MARGIN

System Name	Projected Weight (max ballast) (lbs)
Loaded Rocket (motor & max ballast)	48.7
Nosecone (bulkhead & G10 Shoulder)	5.5
Rover Compartment (airframe, payload altimeter bay & rover)	14.9
Booster Section (airframe, motor mount & recovery equipment)	10.125
Main Altimeter Bay (G10 coupler, bulkheads, altimeters & recovery equipment)	7.175
Parachutes	1.5
Max Ballast Allocated	4.25
Aerotech 75mm L1420 Motor (Total / Propellant)	9.5/5.64

AGENDA



- 1. Launch Vehicle
- 2. Recovery
- 3. Mission Performance Predictions
- 4. Launch Vehicle Testing
- 5. Payload
- 6. Safety
- 7. Educational Outreach

RECOVERY OVERVIEW

- 1. Drogue parachute: Attached to shock cord that is attached to a U-bolt
- 2. Booster Section parachute: Attached to shock cord that is attached to a U-bolt
- Rover Compartment parachute: Directly attached to nosecone U-bolt and Payload Altimeter Bay U-bolt

DROGUE PARACHUTE

Name	28 inch SkyAngle Classic II drogue	
Deployed at	Apogee	
Material	Zero-porosity 1.9 oz. silicone-coated balloon cloth	
Surface Area (sq ft)	4.4	
Drag Coefficient	.8	
Number of Lines	3	
Line Length (in)	28	
Line Material	3/8" tubular nylon (950 lbs)	
Attachment Type	Heavy-duty 1,500 lb. size 12/0 nickel-plated swivel	

BOOSTER SECTION MAIN

- Larger parachute then noted in CDR
- Heavier Booster Section made change necessary

Name	Fruity Chutes Iris Ultra Light 66" Chute	
Deployed at	950 ft	
Material	.66 oz ripstop nylon	
Surface Area (sq ft)	47.5	
Drag Coefficient	2.2	
Number of Lines	10	
Line Length (in)	66	
Line Material	200# Spectra Nanoline	
Attachment Type	No swivel, plan to purchase and equip a 500# ball bearing swivel	

ROVER COMPARTMENT & NOSECONE MAIN

Name	SkyAngle Classic II 60	
Deployed at	800 ft	
Material	Zero-porosity 1.9 oz. silicone- coated balloon cloth	
Surface Area (sq ft)	39.3	
Drag Coefficient	1.89	
Number of Lines	3	
Line Length (in)	60	
Line Material	3/8" tubular nylon (950 lbs)	
Attachment Type	Heavy-duty 1,500 lb. size 12/0 nickel-plated swivel	

AGENDA

- 1. Launch Vehicle
- 2. Recovery
- 3. Mission Performance Predictions
- 4. Launch Vehicle Testing
- 5. Payload
- 6. Safety
- 7. Educational Outreach

KINETIC ENERGY

Kinetic Energy at Key Phases (ft – lbs)				
	l Nosacona I		Booster Section	
Drogue Deployment	1.03	2.85	1.37	3.54
Main #1 Deployment	421.39	1168.07	561.86	1449.00
Main #2 Deployment	204.69	567.39	272.92	703.85
Touchdown	20.25	56.16	33.9	64.44

Altitude Predictions with Various Ballast					
Wind Speed (mph)	Total Ballast Weight (pounds)	Projected Apogee (feet)	Wind Speed (mph)	Total Ballast Weight (pounds)	Projected Apogee (feet)
0	4.2500	5283	11	3.2500	5289
1	4.1875	5284	12	3.1250	5288
2	4.1250	5285	13	3.0000	5289
3	4.1000	5285	14	2.8750	5289
4	4.0000	5283	15	2.7500	5288
5	3.8750	5301	16	2.6250	5288
6	3.8125	5285	17	2.5000	5288
7	3.6875	5289	18	2.3750	5289
8	3.6250	5282	19	2.2500	5291
9	3.5000	5282	20	2.0000	5288
10	3.3750	5287			

PREDICTED DRIFT

Booster Section and Altimeter			
Wind Speed (mph)	Wind Speed (ft./s)	Drift (ft.)	
0	0	0	
5	7.33	601.33	
10	14.67	1202.67	
15	23.46	1804.00	
20	29.33	2405.33	

Nosecone and Rover Compartment			
Wind Speed (mph)	Wind Speed (ft./s)	Drift (ft.)	
0	0	0	
5	7.33	586.67	
10	14.66	1173.33	
15	23.46	1760.00	
20	29.33	2346.67	

AGENDA

- 1. Launch Vehicle
- 2. Recovery
- 3. Mission Performance Predictions
- 4. Launch Vehicle Testing
- 5. Payload
- 6. Safety
- 7. Educational Outreach

GROUND TEST PLAN & PROCEDURE

Objective

• This test will determine the vehicle's ability to separate with various shear pin sizes and black powder amounts.

Ground Test 1

- Drogue 2 g black powder; 2 x 2-56 shear pins
- Main 1 4 g black powder; 4 x 2-56 shear pins
- Main 2 2 g black powder; 3 x 2-56 shear pins

Ground Test 2

Change to Main 1 – 2 x 2-56 and 2 x 4-40 shear pins

FULL SCALE GROUND TEST

Ground Test 1 - Nosecone Section

Ground Test 1 - Booster Section

FULL SCALE FLIGHT SIMULATION


Full Scale Launch Simulation			
Apogee	5295		
Time to Apogee	19.08		
Max Velocity	616.58		
Max Acceleration	228.54		
Ground Hit Velocity	15.52		
Total Flight Time	96		

LAUNCH #1

Full Scale Launch #1 Analysis			
Motor	Aerotech L1420		
Ballast	None		
Apogee	5578 ft		
Time to Apogee	18.1s		
Max Velocity	551 fps		
Descent Rate	22 fps - Booster 41 fps - Payload & Nosecone		
Total Flight Time	198.7 s - Booster 83.2 s - Payload & Nosecone		

LAUNCH #1 RECOVERY

- Booster Section slightly damaged
- Booster Section
 drifted due to pre
 mature separation
- Nosecone landed in power lines

LAUNCH #2

Full Scale Launch #2 Analysis			
Motor	Aerotech L1420		
Ballast	2lbs - Nosecone 2.25 lbs – Main Alt Bay		
Apogee	5407 ft		
Time to Apogee	18.2 s		
Max Velocity	549.5 fps		
Descent Rate	28 fps – Booster 97 fps – Payload & Nosecone		
Total Flight Time	84.525 s		

LAUNCH #2 RECOVERY

- Booster landed successfully
- Nosecone landed in marsh
- No structural or electrical damage occurred

LAUNCH #2 SOLENOID TEST

- Results
 - Test was overall failure
 - Pins were forced out of sockets and bent at 45 degree angle
- Action Plan
 - Upgrade with stronger solenoids
 - Use four solenoids instead of 2

LAUNCH VEHICLE REQUIREMENTS

Vehicle

8 left to verify after CDR Full Scale Flight 1/27/18 Full Scale Flight 2/17/18

Verifications complete

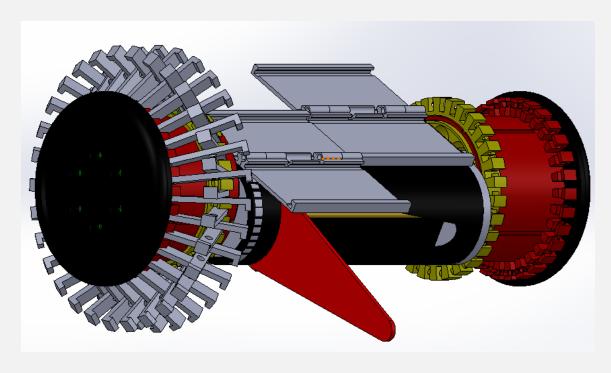
Recovery

4 left to verify after CDR

Full Scale Flight 1/27/18

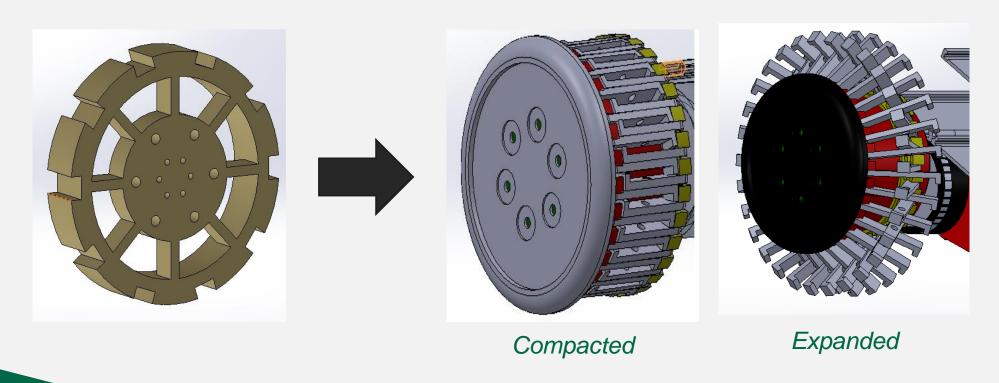
Full Scale Flight 2/17/18

Verifications complete


AGENDA

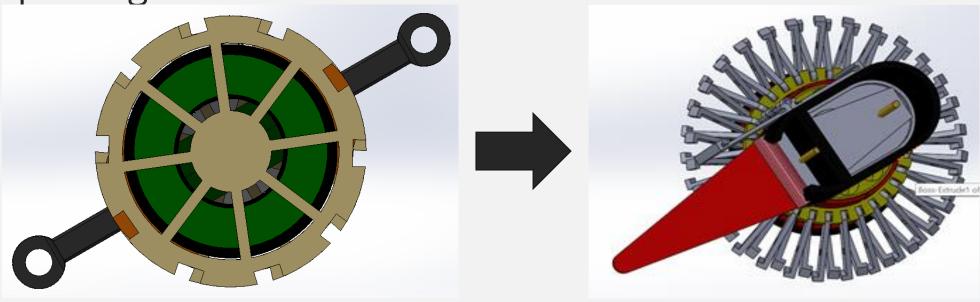
- 1. Launch Vehicle
- 2. Recovery
- 3. Mission Performance Predictions
- 4. Launch Vehicle Testing
- 5. Payload
- 6. Safety
- 7. Educational Outreach

PAYLOAD CHARACTERISTICS


Note: The right wheel is not pictured with its extendable legs

	Prototyp e	Final (projections)	
Weight	7 lbs	7 lbs	
Height	5 in	5 in – Compacted 8.5 in - Expanded	
Length	13 in	14.5 in	
Motor	12V DC	12V DC	

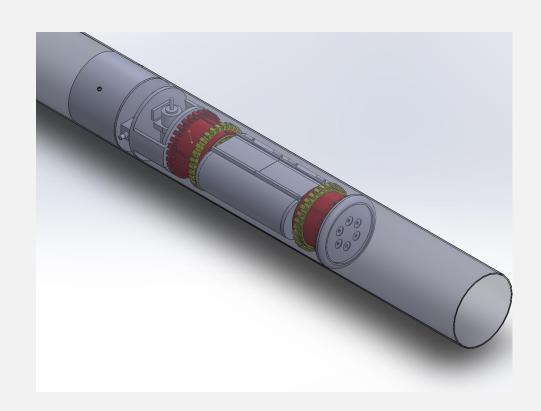
KEY DESIGN FEATURES – EXPANDING WHEEL

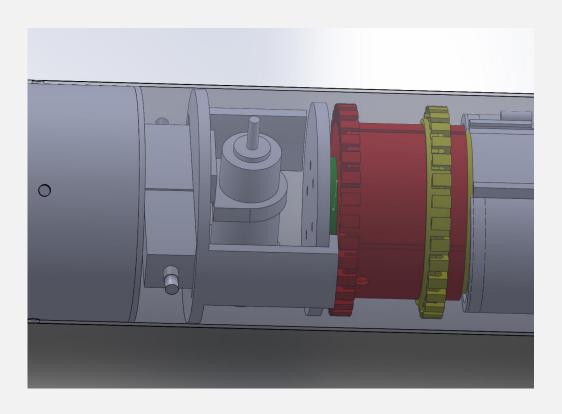

- Results of testing showed a need for design change
- Expanding wheel allows for more clearance and traction

KEY DESIGN FEATURES – NEWTONIAN LEG

- Expanding wheel designed made it necessary for larger Newtonian leg
- Allows for linear translation, prevents unwanted spinning

KEY DESIGN FEATURES – SOLAR PANELS


- Bi-fold design
- 12 5V Solar Cells
- 3D Printed compartment with Torsion Spring



DEPLOYMENT SYSTEM

PAYLOAD INTEGRATION

Loading the Payload

- Situated on a precisely designed retention system intended to discourage movement during flight and prevent premature release after separation
- Rover and deployment system are located aft the Rover Compartment Airframe and will be loaded into the appropriate section before final assembly

Payload Deployment

- Deployment system will start via a connection from a high gain antenna from a remote laptop to the microcontroller and Arduino inside the system
- Once activated the rover will move in a forward motion to exit the open end of the Rover Compartment Airframe

PAYLOAD REQUIREMENTS

Mission requirements to be verified during March launch

- At landing, the team will remotely activate a trigger to deploy the rover from the rocket.
- After deployment, the rover will autonomously move at least 5 ft. (in any direction) from the launch vehicle.
- Once the rover has reached its final destination, it will deploy a set of foldable solar cell panels.

Team Derived Requirements

- Deployable rover will travel at least 10 ft after departing from launch vehicle.
- The rover will have the capability to distribute power from its solar cells to its batteries.

AGENDA

- 1. Launch Vehicle
- 2. Recovery
- 3. Mission Performance Predictions
- 4. Launch Vehicle Testing
- 5. Payload
- 6. Safety
- 7. Educational Outreach

SAFETY

Just one big thing

FOLLOW THE CHECKLIST!

AGENDA

- 1. Launch Vehicle
- 2. Recovery
- 3. Mission Performance Predictions
- 4. Launch Vehicle Testing
- 5. Payload
- 6. Educational Outreach

OUTREACH OVERVIEW

- All 14 events completed
- Total students reached 1653
- Survey for last event 55 students

Student Survey Data					
	How informational was it?	How were the presenters?	How fun was it?	How was it overall?	
Poor	6%	0%	6%	0%	
Average	15%	9%	<mark>39%</mark>	24%	
Good	35%	39%	30%	<mark>46%</mark>	
Great	<mark>44%</mark>	<mark>52%</mark>	26%	30%	

SOCIETY OF AERONAUTICS AND ROCKETRY

Special thanks to our sponsor CAE USA

