| Institution \quad University of South Florida |
| :--- | :--- |

| Milestone \quad CDR |
| :--- | :--- |

Motor Properties	
Motor Brand/Designation	Aerotech
Max/Average Thrust (lb.)	$407.8 / 319.2$
Total Impulse (lbf-s)	1034.8
Mass Before/After Burn (lb.)	$10.1 / 4.4$
Liftoff Thrust (lb.)	340
Motor Retention Method	AeroPack 75mm Flanged Motor Retaining Center

Ascent Analysis	
Maximum Velocity (ft/s)	602.89
Maximum Mach Number	0.54
Maximum Acceleration (ft/s^2)	224.28
Predicted Apogee (From Sim.) (ft)	5304

Recovery System Properties				
Main Parachute \#1 (p. 4 for \#2)				
Manufacturer/Model			Fruity Chutes / Iris Ultra	
Size/Diameter (in or ft)			66 in	
Altitude at Deployment (ft)			950	
Velocity at Deployment (ft / s)			-69	
Terminal Velocity (ft/s)			-16.95	
Recovery Harness Material			Tubular Kevlar	
Recovery Harness Size/Thickness (in)			1/4 in	
Recovery Harness Length (ft)			20 ft	
Harness/Airframe Interfaces		*Slowest speed reached before second main parachute deploys. Shroud lines attached to a 500 pound ball bearing swivel. This swivel will be secured to shock cord with d-link, and upper bulkhead of main altimeter bay.		
Kinetic Energy of Each Section (Ftlbs)	Section 1	Section 2	Section 3	Section 4
	25.43	58.49	33.9	64.44

Recovery Electronics		
Rocket Locators (Make/Model)	SB1 Sounding Locator	
	None	
Ejection System Energetics (ex. Black Powder)	Black Powder	
Energetics Mass - Drogue Chute (grams)	Primary	1.5
	Backup	2
Energetics Mass - Main Chute (grams)	Primary	4
	Backup	4.5
Energetics Masses - Other (grams) - If Applicable	Primary	Backup
		2

Milestone Review Flysheet 2017-2018

Institution	University of South Florida	Milestone

Test Plans, Status, and Results	
Ejection Charge Tests	The full scale rocket will have three points of separation; the drogue section (booster section and main altimeter bay), the first main (main altimeter bay and rover compartment) and the second main (rover compartment and nosecone). Extensive ground testing at a safe location has been conducted and the following ejection charges and shear pin combinations will be used. 1. Drogue: 1.5 and 2 g black powder; $2 \times 2-56$ shear pins 2. Main 1: 4 and 4.5 g black powder; $2 \times 2-56$ and $2 \times 4-40$ shear pins 3. Main 2: 2 and 1.75 g black powder; $3 \times 2-56$ shear pins
Sub-scale Test Flights	The subscale test flights were done on December 16th, 2017. The temperature was in the 60 s with minimal winds. Pre-launch procedures before first flight included loading and setting the black powder charges, activating altimeters with standard 9 V batteries, securing the payload altimeter bay and folding and storing the recover equipment. Saftey officer verified all parts and procedures. First flight used a Cesaroni 54mm 4G K740. Apogee was 3,146 feet and max acceleration of $88 \mathrm{fps}^{\wedge} 2$ and max velocity of 401 fps . Drogue deployed at apogee as expected. The second deployment charge at 1,000 feet, with the first main separating from the rover compartment but the charges did not detach from the main altimeter bay and first main did not deploy. The third deployment charge at 800 feet detached the nosecone and deployed parchute. For the second flight, a Cesaroni 54 mm 4 G K 940 was used was used. This flight reached an apogee of 2,587 feet and max acceleration of $70 \mathrm{fps}^{\wedge} 2$ and max velocity of 362 fps . Deployment and separation at apogee was successful. At 1,000 feet the charges detached the two 4-40 used on this flight for the main alitmeter bay. The shock cord stored in the payload section / rover compartment did not fully extend and detach from the rocket because the parachute was tightly packed. The drogue and first main shock cord became entangled. The rocket safely reached ground without any damage.
Full-scale Test Flights	The ascent of the launch vehicle went well. Given the data received from the EasyMini altimeters on board showed the max acceleration to be 4.12 Gs during the boost phase and the time to apogee at around 28.1 seconds. The drogue chute slowed the launch vehicle to a steady descent rate 77 feet per second until the first main parachute deployment at 950 feet AGL. At this point, the Booster and Main Altimeter Bay separate from the rest of the launch vehicle and descended at an average rate of 28 feet per second for 31 seconds until touchdown. The main parachute responsible for deploying at 800 feet AGL to recover the Nosecone and Rover Compartment airframe was not attached properly, allowing these sections to descend at an unsafe rate. Fortunately, there was no damage to the launch vehicle or electronics stored within the Payload Altimeter Bay.

Additional Comments
Note that all calculations were done using the maximum ballast weight of 4.25 lbs.

Recovery System Properties				
Main Parachute \#2				
Manufacturer/Model			SkyAngle / Classic II	
Size/Diameter (in or ft)			60 in	
Altitude at Deployment (ft)			800	
Velocity at Deployment (ft/s)			-48.09	
Terminal Velocity (ft / s)			-15.13	
Recovery Harness Material			Tubular Kevlar	
Recovery Harness Size/Thickness (in)			1/2 in	
Recovery Harness Length (ft)			20 ft	
Harness/Airframe Interfaces		The SkyAngle parachute comes equipped with a swivel on the end of its shroud lines, which will be attached via d-link to the 20 feet of $1 / 2^{\prime \prime}$ tubular kevlar shock cord. This shock cord wil be stored and attached to the U-bolt		
Kinetic Energy of Each Section (Ftlbs)	Section 1	Section 2	Section 3	Section 4
	20.26	56.16	27.02	69.67

