Milestone Review Flysheet 2017-2018

Institution University of South Florida

Milestone	PDR
Willestone	1 511

Vehicle Properties	
Total Length (in)	93
Diameter (in)	5.148
Gross Lift Off Weight (lb.)	30.2
Airframe Material(s)	Fiberglass
Fin Material and Thickness (in)	1/8" Fiberglass
Coupler Length/Shoulder Length(s) (in)	12/5

Stability Analy	sis
Center of Pressure (in from nose)	79.793
Center of Gravity (in from nose)	64.158
Static Stability Margin (on pad)	3.04
Static Stability Margin (at rail exit)	3.07
Thrust-to-Weight Ratio	8.37
Rail Size/Type and Length (in)	1515/96
Rail Exit Velocity (ft/s)	65

Recovery System Properties					
	Drogue Parachute				
М	anufacturer/Mo	del	SkyAngle CERT3		
Siz	e/Diameter (in o	or ft)	Drogue		
Altitu	ıde at Deployme	ent (ft)	529	8.56	
Veloc	ity at Deploymer	nt (ft/s)	-3.	.53	
Tei	rminal Velocity (ft/s)	-82.75		
Recovery Harness Material		Tubula Kevlar			
Recovery Harness Size/Thickness (in)		1/2"			
Recovery Harness Length (ft)		30			
Harness/Airframe Interfaces		5/16" Zinc-Plated U-bolt, 5/16" locking quick link, parachute swivel		= :	
Kinetic Energy	Section 1	Section 2	Section 3	Section 4	
of Each Section (ft-lbs)	217.98	934.63	135.04	1084.55	

Rec	overy Electronics
Altimeter(s)/Timer(s) (Make/Model)	Missileworks RRC3
Redundancy Plan and Backup Deployment Settings	The recovery system electrical circuits shall be completely independent of any payload electrical circuits. The recovery system shall contain redundant altimeters.
Pad Stay Time (Launch Configuration)	5-6 hours

Motor Properties		
Motor Brand/Designation	Cesaroni/L995	
Max/Average Thrust (lb.)	287.05/214.08	
Total Impulse (lbf-s)	813.36	
Mass Before/After Burn (lb.)	7.92/4.22	
Liftoff Thrust (lb.)	252.69	
Motor Retention Method	Aeropak Retainer Ring/Front End of Motor	

Ascent Analysis		
Maximum Velocity (ft/s)	693.45	
Maximum Mach Number	0.625	
Maximum Acceleration (ft/s^2)	278.25	
Predicted Apogee (From Sim.) (ft)	5298.56	

Recovery System Properties					
Main Parachute					
Ma	anufacturer/Mo	del	SkyAngle CERT-3		
Size	/Diameter (in o	rft)	XL		
Altitu	de at Deployme	ent (ft)	1000		
Velocit	y at Deploymer	nt (ft/s)	-78	.34	
Ter	minal Velocity (1	ft/s)	-10.22		
Recovery Harness Material		Tubular Kevlar			
Recovery Harness Size/Thickness (in)		1/2"			
Recovery Harness Length (ft)		30			
Harness/Airframe Interfaces 5/16" Zinc-Plated U-bolt, 5/16" locking link, parachute swivel, Carbon Fib Strengthened Marine Epoxy		rbon Fiber			
Kinetic Energy	Section 1	Section 2	Section 3	Section 4	
of Each Section (Ft- lbs)	3.32	14.26	2.06	16.54	

Rec	overy Electro	onics
Rocket Locators (Make/Model)		
Transmitting Frequencies (all - vehicle and payload)	***	Required by CDR***
Ejection Syster	n Energetics (ex	. Black Powder)
Energetics Mass - Drogue Chute (grams)	Primary	
	Backup	
5	Primary	
Energetics Mass - Main Chute (grams)		
(8.4)	Backup	
Energetics Masses - Other	Primary	
(grams) - If Applicable	Backup	

Milestone Review Flysheet 2017-2018

Institution	University of South Florida	Milestone	PDR

	Payload
	Rover
Payload 1 (official payload)	Rover design: The sidewinder rover concept was born from the idea of maximizing the possible vehicle wheel diameter. This diameter at the time of this writing is the five-inch internal diameter of the rocket body. Rover design as enough room to meet and exceed mission requirements. If this space for instrumentation is not needed design is also easily shortened to reduce space and weight. Design allows for side loading into cargo section. That allows the rover wheels to be maximized to match inner diameter of rocket body. This is the largest solid wheel possible for this system. The design also incorporates Newtonian legs to improve traction of the two-wheeled system.
	N/A
Payload 2 (non-scored payload)	N/A
	N/A

Test Plans, Status, and Results		
Ejection Charge Tests		
	Tests have not been run yet	
Sub-scale Test Flights	Tests have not been run yet	
	·	
Full-scale Test Flights	Tests have not been run yet	

Milestone Review Flysheet 2017-2018

Institution	University of South Florida		Milestone	PDR
Histitution	Offiversity of South Florida		willestone	1 DIX
Additional Comments				