

University of South Florida Society of Aeronautics and Rocketry Flight Readiness Report

NASA Student Launch Initiative // MAV Challenge

Agenda

Vehicle Criteria

- Subsystems
- Motor Selection
- Simulations
- Testing and Verification Plans

AGSE Overview

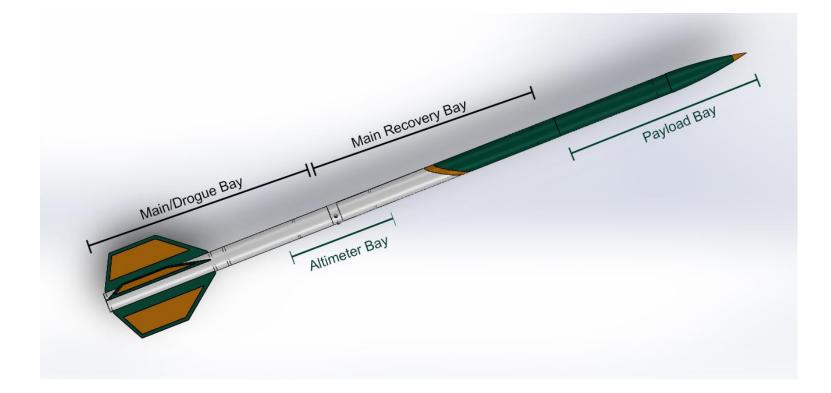
- Subsystems
- Testing and Verification Plans

Project Overview

- Safety
- Budget
- Educational Engagement
- Next Steps

VEHICLE OVERVIEW

Vehicle Overview


Dimensions

- Length: 138 inches
- Diameter: 4 inches
- Weight (Loaded/Dry): 22.8 lbs/17.1 lbs

Materials

- G12 Fiberglass Airframe
- G10 Fiberglass Fins
- Phenolic Couplers
- Baltic Birch Bulkheads and Centering Rings
- Plastic Nosecone

Subsystems

Subsystems (Altimeter Bay)

- 16" Phenolic Coupler
- Baltic Birch Bulkheads
- RRC3 Altimeters
- Black Powder Charges
- Dual Deployment

Subsystems (Recovery)

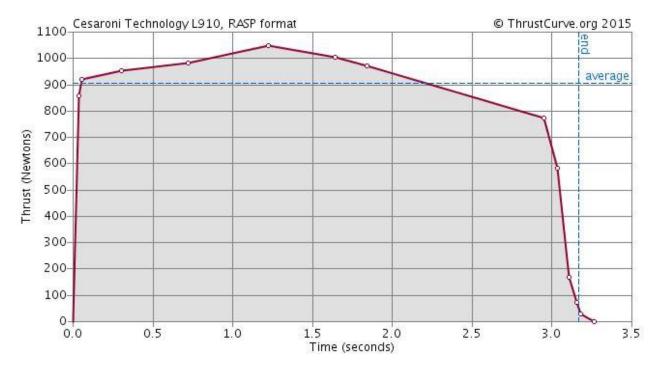
 Slow cure epoxy and carbon fiber bonding of shock cord to motor mount.

Subsystems (Recovery)

Parachute	Load Capacity	Surface Area	Drag Coefficient	Suspension Line	Net Weight	Packed Length
Cert-3 Large	16.2 – 35 lbs	57 ft ²	1.26	80 in	34.0 oz	17 in
Cert-3 Drogue	1.0 – 2.2 lbs	6.3 ft ²	1.16	24 in	6.0 oz	<7 in

Subsystems (Recovery)

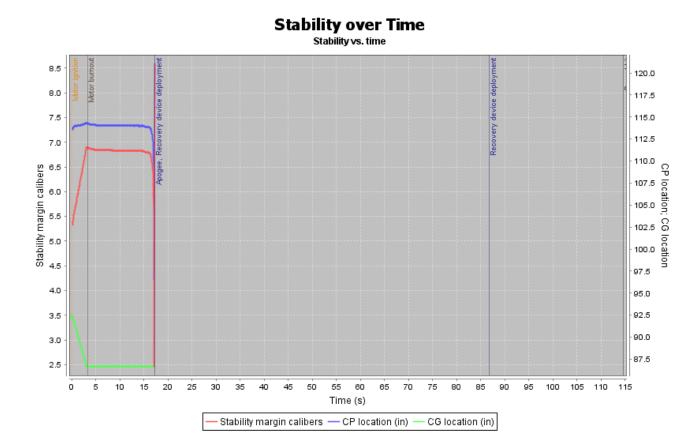
Wind Speed (mph)	Lateral Drift (ft) 500 ft Deployment	Lateral Drift (ft) 800 ft Deployment
5	786.22	889.43
10	1572.45	1778.86
15	2358.67	2668.29
20	3144.90	3557.72


Mass Statement

Section	Mass (lbs)	
Nosecone	1.925	
Payload/Electronics	2.59	
Fore Airframe	4.445	
Fin Can	8.145	
Motor	6.1	

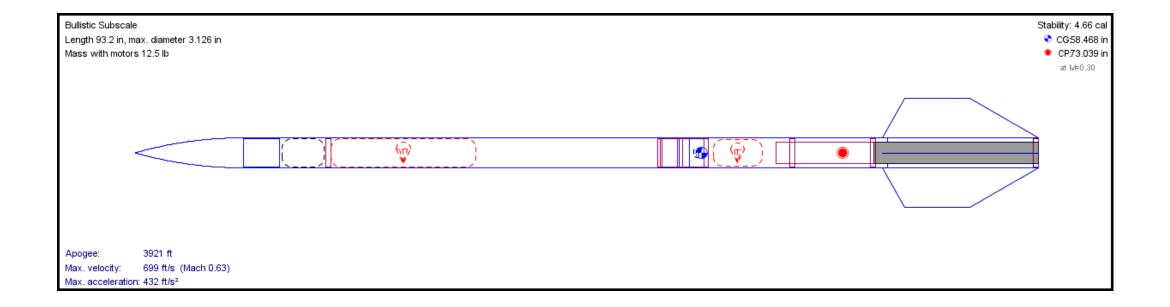
Motor Selection

Motor Selected	CS L910s
Maximum Thrust	1086.1 N
Average Thrust	907.10 N
Thrust-to- weight ratio (Total)	8.93
Motor Diameter	75 mm


Rail Exit Velocity: 82.3 ft/s

Simulations (Stability)

Simulations (Stability)

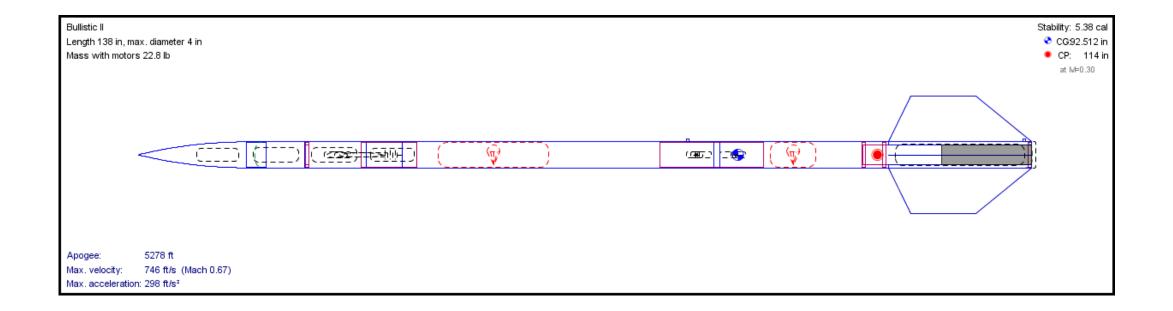


Testing and Verification

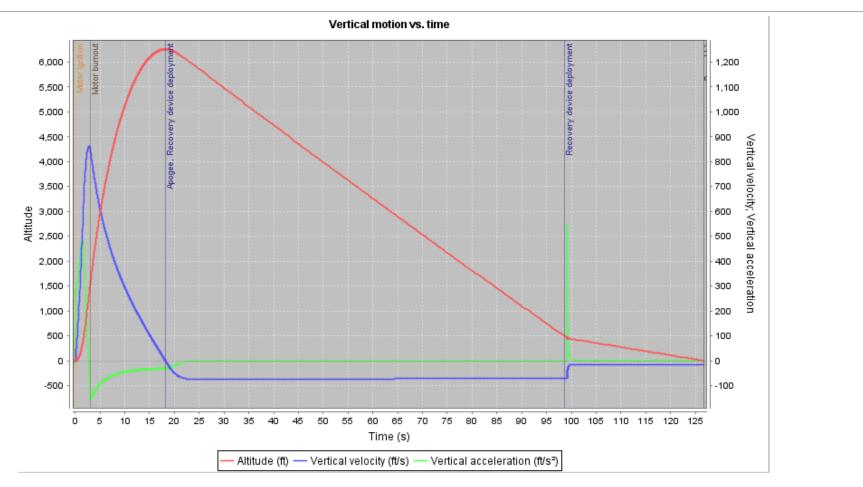
Requirement	Design and Verification
All teams shall successfully launch and recover their full-scale rocket prior to FRR in its final flight configuration.	 Design a 3:4 scale rocket Run OpenRocket Simulation Perform Mission Analysis Post-Flight
Prepare Launch Vehicle within 2 Hours	 Practice Vehicle Preparation with Checklists Inspect for potential delays
The vehicle shall deliver the payload to an apogee altitude of 5,280 feet above ground level (AGL).	 Design for altitude Motor Selection OpenRocket Simulation Test Flight
The launch vehicle shall be designed to be recoverable and reusable.	Design for reusabilityInspect Recovery Systems
Recovery system successfully cause separation and the ejection of both the drogue and main chutes.	 Design for recovery Test black powder charges prior to launch Ensure proper parachute packing. Inspect for verification

TESTING

Subscale Launch



Subscale Launch

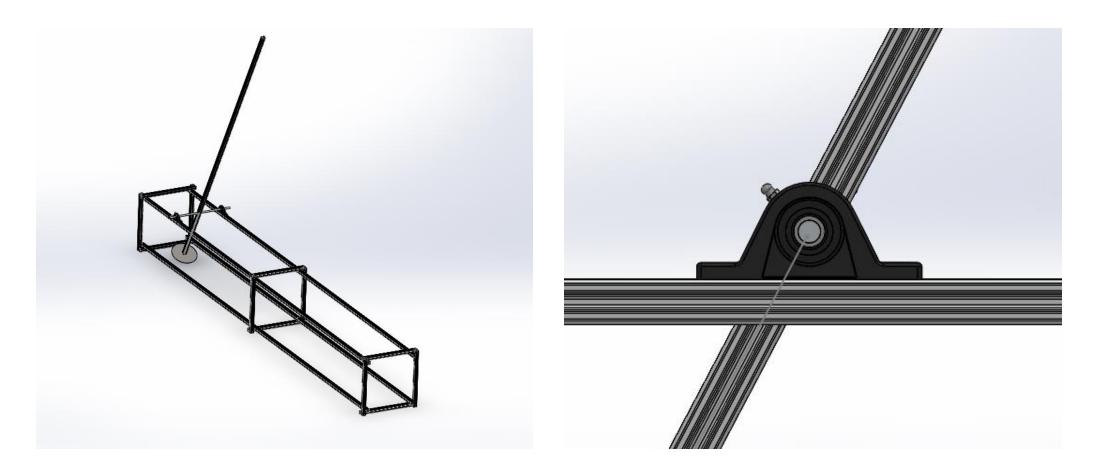

Launch Vehicle Specifications		
Motor	K630WC	
Length (in)	93.2	
Mass (Loaded/Empty) (lbs)	12.5/9.27	
Projected Altitude (ft)	5026	
Actual Altitude (ft)	6262	
Projected Max Velocity (ft/s)	734	
Stability (cal)	4.66	

- Simulation, OpenRocket vs Rocksim
- Stability Adjustment
- Testing Analysis and Conclusions

Fullscale Launch

Fullscale Launch

Fullscale Launch

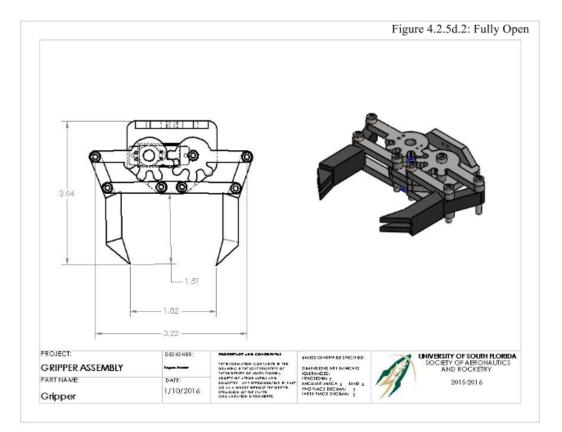

Launch Vehicle Specifications		
Motor	L1112	
Length (in)	138	
Mass (Loaded/Empty) (lbs)	24.8/17.2	
Projected Altitude (ft)	6250	
Projected Max Velocity (ft/s)	856	
Stability (cal)	4.85	

Simulation Results

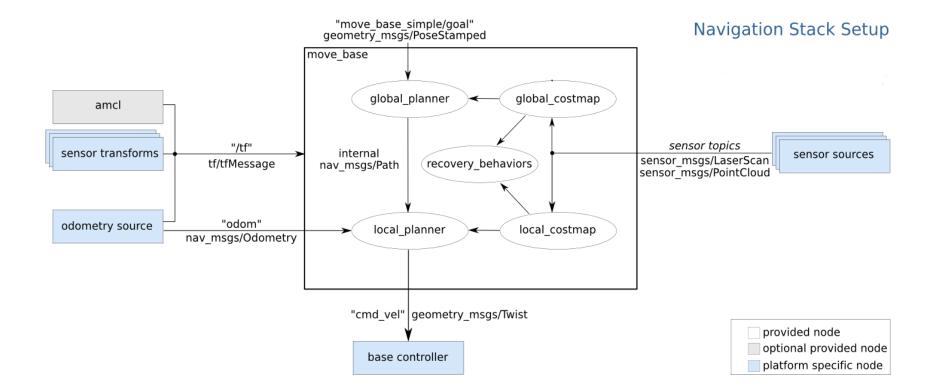
- Results Scaling
- Testing Analysis and Conclusions

AGSE OVERVIEW

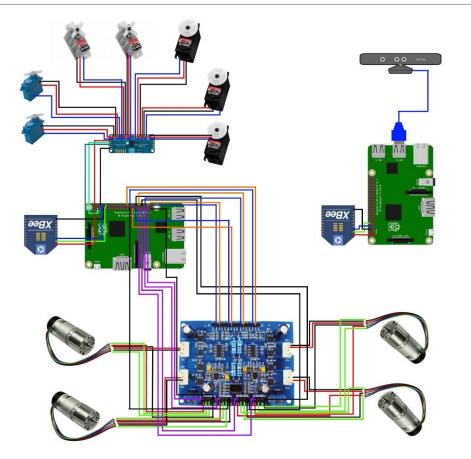
AGSE Rail


12V DC
30"
350lbs (1500N)
5mm/sec
*Ingress of dust is not entirely prevented, but it must not enter in sufficient quantity to interfere with the satisfactory operation of the equipment *Water splashing against the enclosure from any direction shall have no harmful effect
-4°F ~ +149°F
<45db
Built in, Non-Adjustable
6.5 Amps
6mm
34 1/4"
64 1/4"
25%
12 Months

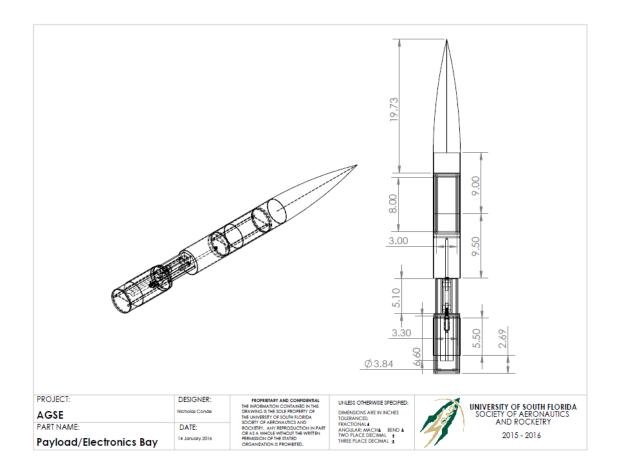
AGSE Capture


- Laser cut Birch Prototyping
- Servo selection and Integration
- Fabrication
- Joint Design
- Arm Scaling

AGSE Capture



- Overall Gripper design
- 3-D Printed Gripper Claws
- Fabrication Techniques


AGSE Process Flow

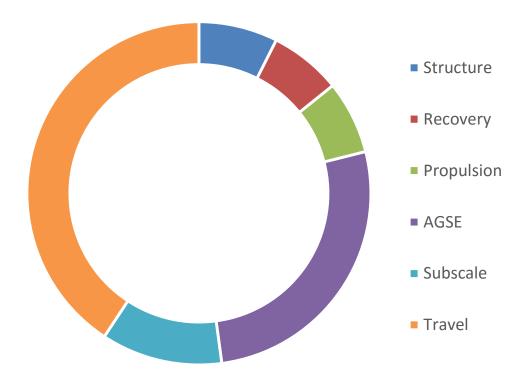
AGSE Electronics

AGSE Containment

- Maintaining Contact throughout process
- Fiberglassing due to material tolerances

Testing and Verification

Requirement	Design and Verification		
Autonomously Capture Payload	 Mechanical Arm and Rover Approach Machine Vision Payload Detection Test for Verification 		
Contain Payload Within Rocket	 Payload Bay Containment System Sealable Door Simulation and Test for Verification 		
Raise Rocket to 5 Degrees from Vertical	 Worm and Gear System Calculations for Design Test for Verification 		
Insert Igniter	Linear Actuator on Rocket Blast PlateDesign and Test for Verification		


PROJECT PLAN

Safety

- Before each launch the checklist and safety standards as set internally and by the Tripoli Rocket Association shall be rehearsed and understood by all attending members.
- Team Mentor Rick Waters will oversee all preparatory activity and directly handle black powder charges.
- A Failure Modes and Hazards Analysis Document has been completed and shall be updated throughout the course of the project.

Budget

BUDGET	Amount
Structure	\$766.64
Recovery	\$697.28
Propulsion	\$710.85
AGSE	\$2,761.80
Subscale	\$1,175.58
Travel	\$4,200.00
TOTAL	\$10,312.15

Educational Engagement

- USF Engineering EXPO
 - Engaging with students from Elementary through High School
 - STEM Education
 - Active engagement with rocket components
 - Introduction to local High Powered Rocketry Community

- Conclude Final Design Paint
- Continue Discrete component testing
- Continue AGSE development and testing
- Continue Education Engagements
- Get ready for Huntsville!

QUESTIONS?

