

University of South Florida Society of Aeronautics and Rocketry Critical Design Review

NASA Student Launch Initiative // MAV Challenge

Agenda

Project Overview

- Vehicle Overview
- AGSE Overview

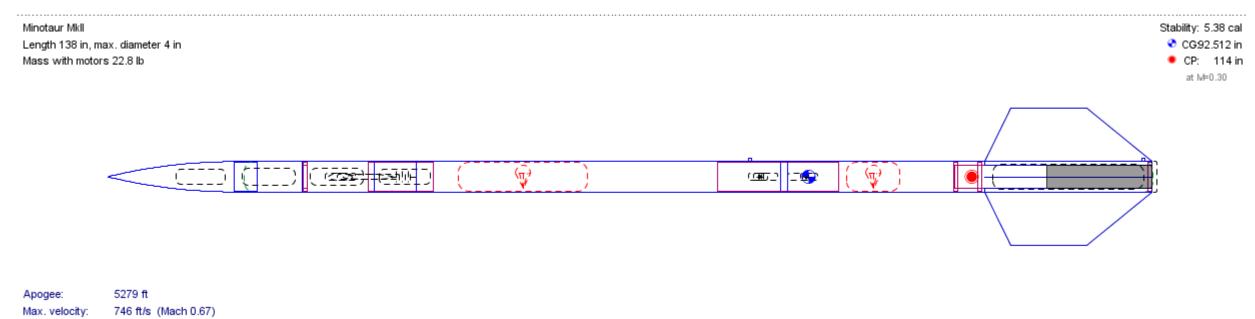
Vehicle Criteria

- Subsystems
- Motor Selection
- Simulations
- Testing and Verification Plans

Subscale Overview

- Vehicle Overview
- Mission
 Performance

AGSE Overview


- Subsystems
- Testing and Verification Plans

Project Plan

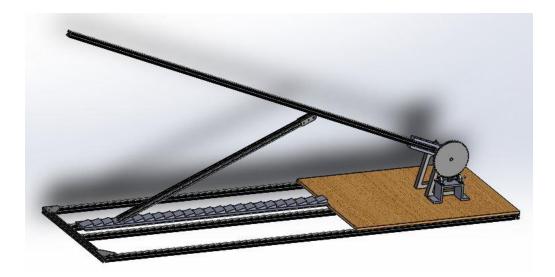
- Safety
- Budget
- Educational Engagement
- Next Steps

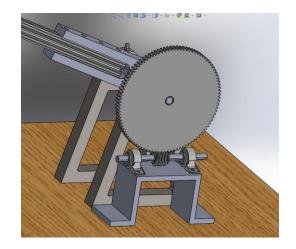
PROJECT OVERVIEW

Vehicle Overview

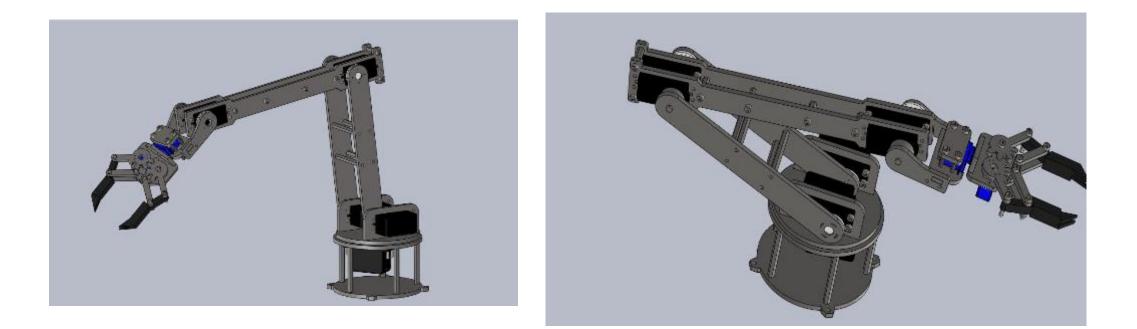
Max. acceleration: 298 ft/s²

Vehicle Overview


Dimensions


- Length: 138 inches
- Diameter: 4 inches
- Weight (Loaded/Dry): 23.2 lbs/17.1 lbs

Materials


- G12 Fiberglass Airframe
- G10 Fiberglass Fins
- Phenolic Couplers
- Baltic Birch Bulkheads and Centering Rings
- Plastic Nosecone

AGSE Overview

AGSE Overview

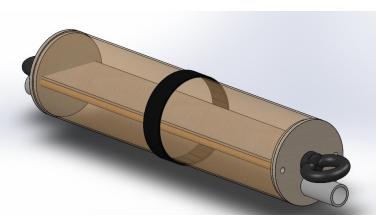
AGSE Overview

VEHICLE OVERVIEW

Subsystems (Airframe)

G12 Fiberglass

Sections


- Payload Bay: 24 inches
- Fore Airframe: 48 inches
- Aft Airframe: 48 inches

Subsystems (Altimeter Bay)

- 16" Phenolic Coupler
- Baltic Birch Bulkheads
- RRC3 Altimeters
- Black Powder Charges
- Dual Deployment

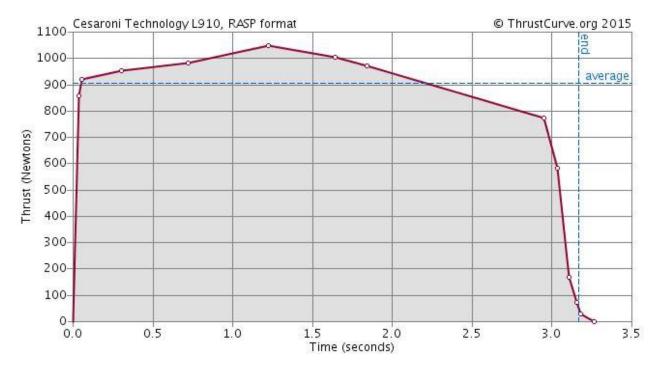
- Dual Deployment with Drogue at Apogee and Main at 500 feet with black powder charge separation
- Sky Angle Cert 3 Parachutes
- Main
 - Large 57 sq. ft, Descent Velocity 15.93 ft/s
 - Drogue
 - Drogue 6.3 sq. ft, Descent Velocity 63.04 ft/s

Parachute	Load Capacity	Surface Area	Drag Coefficient	Suspension Line	Net Weight	Packed Length
Cert-3 Large	16.2 – 35 lbs	57 ft ²	1.26	80 in	34.0 oz	17 in
Cert-3 Drogue	1.0 – 2.2 lbs	6.3 ft ²	1.16	24 in	6.0 oz	<7 in

Wind Speed (mph)	Lateral Drift (ft)
5	650
10	1300
15	2000
20	2525

• Kinetic Energy at Impact in ft-lbm

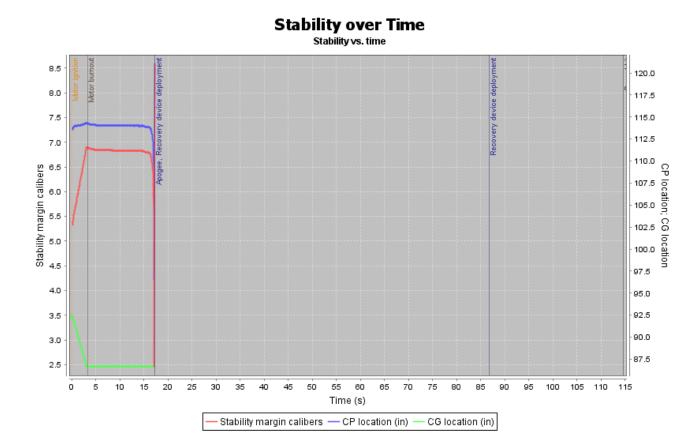
Section	Kinetic Energy (lbm-ft)
Nosecone/ Payload	12.184
Fore Airframe	14.032
Aft Airframe	28.612


Mass Statement

Section	Mass (lbs)	
Nosecone	1.925	
Payload/Electronics	2.59	
Fore Airframe	4.445	
Fin Can	8.145	
Motor	6.1	

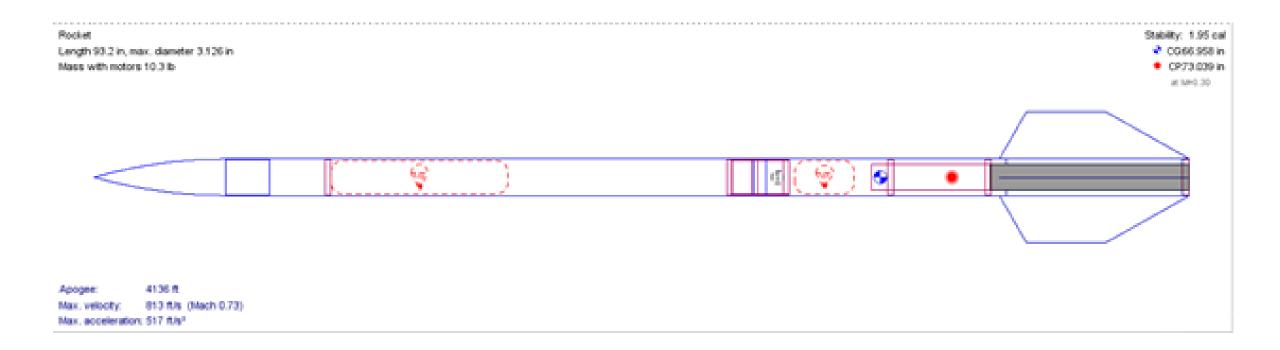
Motor Selection

Motor Selected	CS L910s
Maximum Thrust	1086.1 N
Average Thrust	907.10 N
Thrust-to- weight ratio (Total)	8.93
Motor Diameter	75 mm


Rail Exit Velocity: 82.3 ft/s

Simulations (Stability)

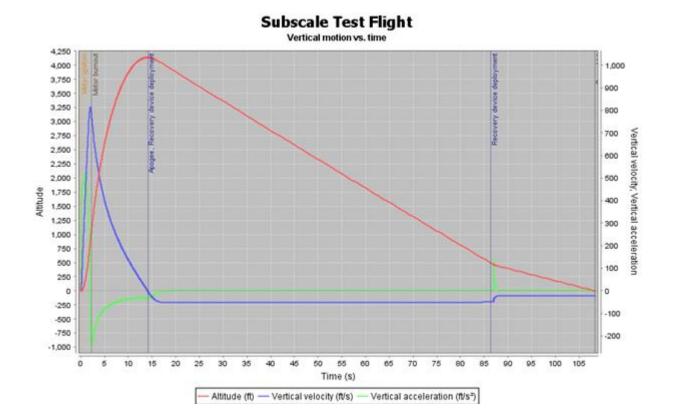
Simulations (Stability)



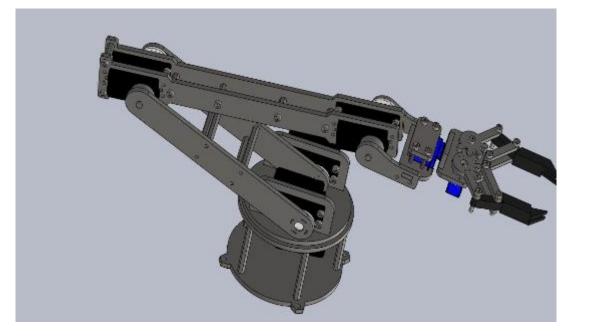
Testing and Verification

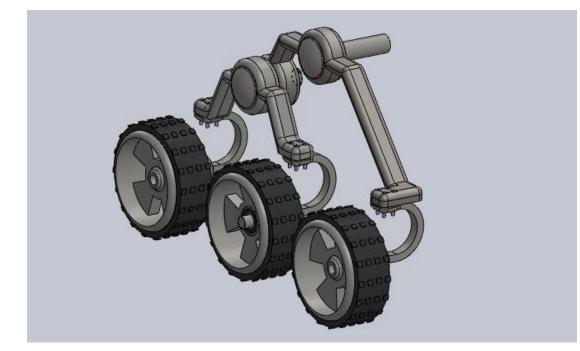
Requirement	Design and Verification
All teams shall successfully launch and recover their full-scale rocket prior to FRR in its final flight configuration.	 Design a 3:4 scale rocket Run OpenRocket Simulation Perform Mission Analysis Post-Flight
Prepare Launch Vehicle within 2 Hours	 Practice Vehicle Preparation with Checklists Inspect for potential delays
The vehicle shall deliver the payload to an apogee altitude of 5,280 feet above ground level (AGL).	 Design for altitude Motor Selection OpenRocket Simulation Test Flight
The launch vehicle shall be designed to be recoverable and reusable.	Design for reusabilityInspect Recovery Systems
Recovery system successfully cause separation and the ejection of both the drogue and main chutes.	 Design for recovery Test black powder charges prior to launch Ensure proper parachute packing. Inspect for verification

SUBSCALE OVERVIEW

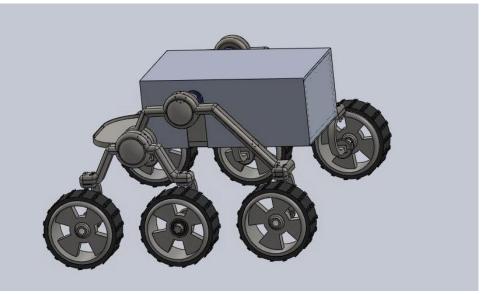

Subscale Overview

Subscale Overview


Length (in)	93.2	
Mass (Loaded/Empty) (lbs)	10.3/7.14	
Projected Altitude (ft)	4136	
Projected Max Velocity (ft/s)	813	
Stability (cal)	1.95	


Subscale Overview

AGSE OVERVIEW


Subsystems (Capture)

Subsystems (Capture)

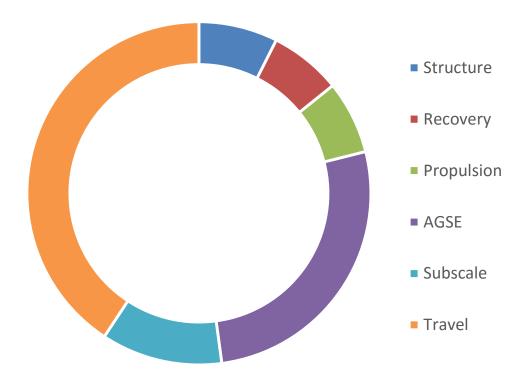
- Payload Approach through Rover
- OpenCV Machine Vision Detection and Verification
- Rover Approach with Arm
- Mechanical Arm and Gripper Interaction
- Rocket Approach and Positioning

Subsystems (Containment)

- Linear Actuator Movement
- 3-D Printed Payload Sled
- Can easily be integrated into launch vehicle design

Testing and Verification

Requirement	Design and Verification		
Autonomously Capture Payload	 Mechanical Arm and Rover Approach Machine Vision Payload Detection Test for Verification 		
Contain Payload Within Rocket	 Payload Bay Containment System Sealable Door Simulation and Test for Verification 		
Raise Rocket to 5 Degrees from Vertical	 Worm and Gear System Calculations for Design Test for Verification 		
Insert Igniter	Linear Actuator on Rocket Blast PlateDesign and Test for Verification		


PROJECT PLAN

Safety

- Before each launch the checklist and safety standards as set internally and by the Tripoli Rocket Association shall be rehearsed and understood by all attending members.
- Team Mentor Rick Waters will oversee all preparatory activity and directly handle black powder charges.
- A Failure Modes and Hazards Analysis Document has been completed and shall be updated throughout the course of the project.

Budget

BUDGET	Amount
Structure	\$766.64
Recovery	\$697.28
Propulsion	\$710.85
AGSE	\$2,761.80
Subscale	\$1,175.58
Travel	\$4,200.00
TOTAL	\$10,312.15

Educational Engagement

- Engagement at local schools with passive and active events
- Involvement in USFs Engineering EXPO outreach event to numerous local students

- Fabricate Final Design
- Develop AGSE Prototype
- Test Full Scale 2/20
- Initiate Educational Engagements

QUESTIONS?

