Milestone Review Flysheet

Institution University of South Florida

Milestone Preliminary Design Report

Vehicle Properties		
Total Length (in)	102	
Diameter (in)	4	
Gross Lift Off Weigh (lb)	33	
Airframe Material	G12 Fiberglass	
Fin Material	G10 Fiberglass	
Drag	57 lbf	

Stability Analysis		
Center of Pressure (in from nose)	76.506 in	
Center of Gravity (in from nose)	68.224 in	
Static Stability Margin	2.82	
Static Stability Margin (off launch rail)	2.06	
Thrust-to-Weight Ratio	8.823	
Rail Size and Length (in)	121	
Rail Exit Velocity	77.9 ft/s	

Recovery System Properties				
	Dogue Parachute			
Manufactu	Manufacturer/Model SkyAngle			
Si	Size 6.3 sq. ft			
Altitude at Deployment (ft)			Apogee	
Velocity at Deployment (ft/s)			0	
Terminal Velocity (ft/s)			90.4	
Recovery Harness Material		Tubular Nylon		
Harness Size/Thickness (in)		1		
Recovery Harness Length (ft)		10.5		
Harness/Airframe Interfaces Nosecone/P			ction between U bolts on Payload Bay Bulkead and Fore fastened to the Fore Airframe.	
Kinetic Enerfy	Kinetic Enerfy Section 1		Section 3	Section 4
of Each Section (Ft-Ibs)	82.258	94.909	366.15	N/A

Recovery Electonics		
Altimeter(s)/Timer(s) (Make/Model)	RRC3/Missile Works	
Redundancy Plan	2 Altimeters wired to redundant seperation charges	
Pad Stay Time (Launch Configuration)	3 Hours	

Motor Properties		
Motor Manufacturer	Gorilla Motors	
Motor Designation	L1112BT	
Max/Average Thrust (lb)	291.577/252.91	
Total Impulse (lbf-s)	833.816	
Mass Before/After Burn	529/451 oz	
Liftoff Thrust (lb)	267.522	

Ascent Analysis		
Maximum Velocity (ft/s)	678	
Maximum Mach Number	0.61	
Maximum Acceleration (ft/s^2)	252	
Target Apogee (From Simulations)	5280	
Stable Velocity (ft/s)	105	
Distance to Stable Velocity (ft)	25	

Recovery System Properties				
Main Parachute				
Manufactu	ırer/Model		SkyAngle	
Si	ze		89 sq. ft	
Altitude at Deployment (ft)		500		
Velocity at Deployment (ft/s)		90).4	
Terminal Velocity (ft/s)		15.9		
Recovery Harness Material		Tubular Nylon		
Harness Size/Thickness (in)		1		
Recovery Harness Length (ft)		10.5		
		tween Ubolts on Aft Altimer Bay top centering ring of the motor mount.		
Kinetic Enerfy	Section 1	Section 2	Section 3	Section 4
of Each Section (Ft-Ibs)	14.468	16.693	64.4	N/A

Recovery Electonics		
Rocket Locators (Make/Model)	TeleGPS/Apogee	
Transmitting Frequencies	***Required by CDR***	
Black Powder Mass Drogue Chute (grams)	0.5 g	
Black Powder Mass Main Chute (grams)	0.5 g	

Milestone Review Flysheet

Institution University of South Florida Milestone Preliminary Design Report

Autonomous Ground Support Equipment (MAV Teams Only)			
Capture Mechanism	Overview The robotic arm will be attached to the base of a rover mechanism. After the payload has been approached a camera on the end of the robotic gripper will determine the payload location and orient itself for capture. Upon capture the rover will return to a predefined base and confirm payload location and orientation at a static camera attached to the base of the rail.		
	Overview		
Container Mechanism	The container mechanism is being tested and decided between three separate conepts right now. We will either be working with a simple padded enclosure and hatch mechanism, a bistable compliant mechanism constructed from laser cut acrylic, or a closed circuit pneuematic "airbag" design.		
	Overview		
Launch Rail Mechanism	The launch rail will be lifted by a worm and gear mechanism. A locking rod will move from groove to groove in order to safely support the rod from slippage. The ratcheting mechanism will also serve to increment the number of degrees raised using discrete units that will allow us to definitivley raise the rail to 15 degrees from vertical.		
	Overview		
Igniter Installation Mechanism	The igniter will be installed in a linear actuator attached to the baseplate of the AGSE rail. The igniter will be kept straight by a guide hole in the blast plate and directed upwards by the linear actuator after the launch rail is in position.		

Payload			
Overview			
Payload 1	The AGSE payload will be a sealed PVC pipe 3" in length and 3/4" in diameter filled with sand in order to weigh 4 oz.		
	Overview		
Payload 2			

Test Plans, Status, and Results				
Ejection	The ejection charge tests precede each launch.			
Charge Tests				
	The subscale test flight is scheduled for 12/12			
Sub-scale Test Flights				
	The full scale test flight is scheduled for 2/20			
Full-scale Test Flights				
3				

Milestone Review Flysheet		
Institution		Milestone
	Additional Comments	